Fahimeh Salimi

From

Fahimeh Salimi

Supervisor: Krishna Mahadevan

Proposed collaborative internship with Elizabeth Edwards

The ultimate goal of this study is to develop methods for modeling and engineering the metabolism of a clostridial co-culture, and improving the biobutanol production rate with the use of a consolidated bioprocessing approach. Genome-scale metabolic models of microorganisms from different domains of life have been developed and been applied for analyses of metabolism in pure cultures; however systems biology of microbial co-cultures will extend our knowledge on pure culture physiology to microbial co-cultures, where metabolic interactions along with inter-species transport of metabolites are present. System-level understanding of the Clostridium cellulolyticum and Clostridium acetobutylicum co-culture metabolism, which can be applied for biobutanol production from cellulosic biomass, facilitates the analyses and design of strategies for process and metabolic optimization; thus improving the biobutanol production rate. Therefore, the development of computational methods to investigate the interactions between microorganisms in microbial co-cultures, based on the community genome sequences and physiology, is beneficial for the ultimate engineering of these co-cultures; consequently the focus of this proposal is the development of such methods.

Personal tools
MediaWiki Appliance - Powered by TurnKey Linux